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The proton driver for the pp collider requires short bunches in order to minimize the longitudinal
phase space entering the p cooling system and optimize the separation of + and - polarizations. A
specific requirement of 1 ns has been set, which is considerably shorter than any high current
bunch produced in a high current proton synchrotron. We have examined a number of methods
which should be able to reduce the bunch length.
1} Extraction near transition energy Y
« Normal extraction below transition
* Extraction using long. space charge driven oscillations y>%
2) RF manipulation
« Adiabatic spreading followed by bunch rotation ¥ >> Y
* Bunch rotation, ¥ slightly <y, extraction <7 or >Y
* Bunch length ~ Hvge
* Quadrupole modes
+ Higher frequencies / shorter buckets
3) Bunch shortening instabilities
* Negative mass compresses above ;.
* Manipulation of wall reactance
4) Coalescence of many small bunches
+ Induction linacs and external bunching ring
» Coalescence of bunches in the accelerator
5) Chicane systems to coalesce bunches at target
6) Combine many short | bunches in m cooling system
Of these methods the cheapest and perhaps easiest are bunch rotation using existing cavities and
ssynchrotron magnets.

Of particular interest is a method which partly operates near transition AE T
where phase slip is small. Ideally, operating just at transition with the rf
cavities would permit shearing of the bunch vertically in synchrotron
space which would permit arbitrarily a large momentum slewing along the
length of the bunch. Moving the transition gamma far above that of the >
beam would then permit the bunch to be rotated to the vertical position, — o
where a short bunch would be produced. This is shown at right. The
primary problem with this technique is that the dynamics of beams near w

\

transition are quite nonlinear and the nonlinearities ultimately constrain the
minimum bunch length produced. This note describes the dynamics of
the bunch rotation scheme and describes the limitations imposed by the Phase Space



nonlinearities introduced by operating near transition.
The dynamics of beams near transition can be described following Cappi et al (IEEE Trans. on
Nucl. Sci. NS-28 (81) 2389) we express the transition gamma as a function of the beam
momentum p = po( I + 8), and the cirumference L = Ly ( I + 016 + ojoed + - - - ), this gives
®=woll-(05+02)8 J=[1-(15+w2)8 ]
where
ar=1/%0%
op=-1-26-4E+wy ~1 +wp
& = natural chromaticity ~ -1
A€ = chromaticity correction ~ 0
and dipo = Dispersion function. The machine lattice also determines
wz = wiggling factor = / apo,Z ds/2 al L,
where a value of 0.44 was measured and calculated for the CERN PS. These expressions
determine the longitudinal dynamics through the slip factor 77 = 172 — 1/%? and the bunching
time, which should be minimized, t = ¢,/ 2 % fry 1 Ap/p. For y=10 and Ay = | these terms look

like the graph below. Note that no higher order terms are included since it was experimentally
determined that y( 8) was effectively linear, with negligabie 32 terms.
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When Ay =% — ¥ is small, the term 1} 8p/p, which govemns the horizontal slip velocity of particles
in synchrotron space is essentially parabolic, since both 7 and dp are propotional to é.
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This quadratic dependance on & will produce a quadratic dependence of the bunch shape which
should prohibit small bunch lengths. This can be shown by tracking a bunch during rotation near
transition. The calculation assumes that Ay= 1 during the initial momentum slewing with an rf
voltage of 1 MV/turn, and Ay ~ 4 during the horizontal sheer with the voltage turned off. The
results are shown below, plotting the 1 and 2 o boundaries.
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The quadratic dependence of the phase slip can be compensated by introducing a phase dependent
momentum correction in the initial state. Using the expansion of the sinusoidal rf waveform

Veos 8= V(1-022 + @44 - ---)

since 1-cos 6 ~ 62, for small 6, the nonlinearity of the rf wave itself can be used to compensate the
nonlinearities near transition. This can be done by decelerating the bunch on the crest of the rf



wave, with the phase spread of the beam ( 30°) providing sufficient momentum dependence for
the required correction for a 4 MHz rf waveform. The whole system is shown below.
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With an initial 200 MeV deceleration on the crest of the rf wave, this process produces the

following results. The remaining cubic dependence of the final state on the momentum is more
difficult to remove, and has been assumed to define the limits of this method.
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This technique depends on the ability of the lattice to make changes in % quickly and easily, which
in this context means that the tunes of the machine should not change much. It seems that this can
be accomplished by means of a Flexible Momentum Compaction (FMC) lattice initially proposed
by Lee, Ng and Trbojevic. We have produced a lattice which might be appropriate for a 10 GeV
machine based on these ideas. One period (out of 10) of this lattice is given below.



QF: QUAD, L=0.25, Kl1=-.2476133

QD: QUAD, L=0.25, K1=0.2642944

QFl: QUAD, L=0.75, Kl=-.2041294

QD1: QUAD, L=0.75, K1=0.1778612

B: SBEN, L=4.00, ANGLE=0.12566

Bl: SBEN, L=1.75, ANGLE=0.001

B2: SBEN, L=2.00, ANGLE=0.06283

D1: DRIFT, L=0.65

D2: DRIFT, L=1.20

CELL: LINE=(QF,D1,B,Dl,QD,QD,Dl,B, D1, QF)
CENTER: LINE=(QF,D1,QF1,D2,QD1,D2,B1,B1,D2,QD1,D2,QF1,D1,QF)
PERIOD: LINE= (B2, D1, CELL, CENTER, CELL, D1, B2)

This lattice seems to have the desirable property that the ¥ is much more sensitive than other
parameters to the quad settings, as shown in the plot of horizontal and vertical tunes as a function
of ¥, where the four quad settings are varied. Although the lattice was not optimized, it generates
reasonable parameters.
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The method outlined here seems to be fairly simple and inexpensive to implement and should have
the ability to produce ~1 ns bunches from 2.5 eV-s bunches containing 1.2 - 1013 protons per
bunch.

A preliminary analysis of instabilities assoicated with the short bunch has shown that the bunch
should be comparatively stable since: 1) the beam energy is below transition at all times, 2) the
large space charge tune shift will produce considerable Landau damping, effectively limiting the
coherence time to a few turns, 3) the large momentum spread will dominate the Keil-Schnell
relation, raising the threshold for longitudinal microwave instability, and 4) the final bunching
should take place over comparatively few turns, with the incoherent tune shift sufficiently different
on each turn that resonance effects will be unlikely. We have examined the effects of structure
resonances, transverse space charge, longitudinal space charge, transverse resistive wall,



longitudinal microwave, high frequency cavity beam loading, Robinson instability, intra-beam
scattering and charge neutralization by residual gas. These are all expected to produce significant
but not necessarily pathological effects. More detail on instabilities are presented in The p p
Collider - a Feasibility Study, May 1996.



